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Abstract 
In this paper, a finite element model for simulating crustal deformation 

including discontinuous slipping displacement along a fault is developed, where 

slip weakening behavior with a simple shear stress-relative displacement 

relationship on fault surface based on the concept of nonlinear fracture 

mechanics is taken into consideration. Throughout numerical simulations on 

fault-bend folding with a ramp, the contours and developments of the shear 

stress, the second stress invariant and the slip velocity varying with the values of 

fracture energy are investigated. Moreover, the breakdown process is discussed. 

 

1 Introduction 
 

It is known that many shallow earthquakes occur on plate boundaries and active geological faults, 

which are evidently pre-existing weakness in the shallow brittle part of the Earth. So far, numerous 
experimental studies on frictional sliding of pre-existing faults in rocks have been carried out for 

understanding mechanics of earthquake faulting.  
From the initial rational knowledge, there are two basic laws of sliding friction: the frictional 

resistance is proportional to the normal load and it is independent of the apparent area of the sliding 
surfaces. Later, extensive and quantitative experimental investigations of friction have been 

performed by Amontons and Coulomb who have formulated the dry friction laws in the form which 
is still widely used and taught nowadays. In the frictional laws, the stress drop between static friction 

and dynamic friction is assumed to be constant. So the stress and slip velocity exhibit the singularity 
at that time. Although the frictional law is practically useful for estimating average source 

parameters of earthquakes, the singularity is physically unreasonable. To eliminate the stress 
singularity at the crack tip, Ida, Palmer and Rice developed a slip-weakening model. Then Andrews 

theoretically discussed the critical crack length for unstable rupture for 2D shear cracks. Since the 
slip velocity and the slip acceleration due to the cohesive force have finite values near the crack tip 

as theoretically shown by Ida, Ohnaka and Yamashita investigated the behavior of slip velocity and 
slip acceleration more in detail. Also, the slip-weakening behavior has been experimentally 

examined by many researchers from which it is found that quasi-stable sliding occurs on a localized 
region of a fault prior to unstable slip, the length of the localized region of quasi-stable sliding 

corresponds to the critical crack length for unstable rupture. But in general, present FEM method, 



this effective model isn’t considered. So in this paper, the finite slip-weakening model is introduced 
to a finite element method using a Lagrange description to avoid stress singularity.  

 
2 Basic theory 
 
In this present study, a structural system of fault-bend folding in which the reference configuration of 

a body exhibiting slipping along a fault surface so that the whole structural system is characterized 
by two constitutive relations. One is a volumetric constitutive law that relates stress and strain for 

body, while the other is a cohesive-softening and frictional surface constitute relation between the 
shear stress and relative displacement jumps for the fault. Using a Lagrange description, an attention 

is confined to quasi-static deformations and, with body forces, boundary forces and traction on 
internal fault surface considered, the incremental formulation of principle of virtual work is written 

as 
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The body is subjected to a body force field {r0} in V, prescribed external traction {f0} on force 

boundary S0 and internal traction {fc} caused by relative displacement jump on discontinuous 
surface Sc.  Here {s} is Lagrange stress vector; { ε } is Lagrange strain vector.  

 
 

 
 

 
 

 
 

 
 

 
To get the balance of the internal tractions on the two sides of the fault surface, master-slave method 

is used. For the constitute relation on the fault surface, the slip-weakening model shown in Fig.1 is 
adopted. The total fault surface of rocks can be consist of three zones: locked zone where sliding 

surfaces are strongly interlocked, breakdown zone where all the interlocked asperities are weakening 
until fractured and creaked zone which is behind the breakdown zone. The cohesive force between 

inner fracture surfaces is assumed to be a continuously decreasing function of relative displacement 
across the crack in order to eliminate the stress singularity at the crack tip. The relative displacement 

across the fault during the breakdown process is called the critical slip displacement dc. The shaded 
area for the stress-slip relation is regarded as the energy required for creating new fracture surfaces 

of unit area or the work done by the cohesive force. This energy has been often called the fracture 
energy Gc, representing the rupture growth resistance.  

Generally, in the locked zone, the incremental formulation of the fault traction can be obtained 
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Fig.1 Three zones of different contact states between sliding surfaces on the fault and relation 
between shear stress and slip across a fault 
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through the incremental formulation of relative displacement { ∆( ∆u)} and stiffness matrix [Kc] on 
the fault surface 

{ } [ ] ( ){ }uKf cc ∆∆=∆             (2) 

ltfltf nt // == στ     (3) 

where τ and σ are the shear and normal stress on the fault surface; l is the length of interface element 
and t is the thickness. When the shear stress τ reaches to the value of peak stress τp which is equal to 

µsσ, the weakening of the shear stress is beginning: µs is the static friction coefficient. Then the 
fracture energy begins to release. Thus, the incremental traction caused by relative displacement is 

added to the total incremental traction 
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where ∆uc
w is the relative incremental weakening displacement which is the function of Gc, dc, the 

tangent stiffness Kt and the relative displacement ∆d from the beginning of initial weakening  
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As the fracture energy releases completely, the residual stress becomes to dynamic frictional stress 

which is assumed to obey the rate- and state-dependent friction law proposed by Ruina 
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where µd is the dynamic friction coefficient , V is sliding velocity of an element and *V  is a 

reference velocity given arbitrarily. The constants µ0, a, b and L characterize the frictional property. 
Generally, 0/ =dtdθ means steady-state. 

  

3 Numerical simulation 
 

 

 

 

 

 

 

 

 

 

 

Fig.2 shows a finite element mesh of a structural model with fault-bend folds, whose responses in 
long time have been investigated very well. In this paper, we focus on the effect of the response in 

short time and weakening material behaviors on the fault surface. Each structural model contains 
480 6-node isoparametric, quadratic triangle elements. Plane strain is assumed. The initial fault 

geometry consists of a 2000m long and 500m high ramp connecting lower and upper flats. A surface 
pressure of 75 MPa is applied to the top of the hanging wall, which simulates a 3km overburden. 

There is zero shear stress along this top surface of the model. A zero displacement boundary 

Fig.2 Initial, undeformed grid for the finite-element model, showing boundary conditions 
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condition, Ux=Uy=0, is used along the left (hinterland) side of the hanging wall and the footwall, 
Uy=0 along the base of the model and Ux=0 along the right (foreland) side of the footwall. A 

displacement of 50cm per 50 year time step is imposed on the left side of the hanging wall, the 
velocity (1 cm y-1) that is consistent with estimates of natural thrust sheet motion but the time step 

can automatic vary with different periods and different conditions. The shaded elements from left to 
right are named as element 1,2 and 3. Moreover, the below-right corner-node of element 1 is named 

as node 1 and by the same method, node 2,3 are named. 
 

 

 

 

 

 

 

 
 

 
 

 
Fig.3 shows the contours of (J2)

1/2 in different period as µs=0.25, µd=0.20, Kt=1.2×107 Pa and 

Gc=1×105 Jm-2, where it is 10MPa per layer of right bar. It is found that at every time, the higher 
values accumulate in the right side of the forelands of the hanging wall and footwall. Collating the 

initial contour, at the time when the node 1 is weakening, in the hanging wall, the area of low value 
enlarges from the hinterland to the foreland; and also, in the footwall, the area with higher J2 in the 

hinterland enlarges. When the node 2 is weakening, collating Fig.3b, in the hanging wall, the area of 
low value enlarges to the foreland but reduces from the hinterland; and the area with higher J2 in the 

hinterland enlarges continuously. Contrasting with Fig.3c, when the node 3 is weakening, in the 
hanging wall, the area of low value also enlarges to the foreland and also reduces from the 

hinterland; and the area with higher J2 in the hinterland also enlarges continuously. Furthermore, by 
the total trend, the nodes on the fault surface are yielding from left to right, but in some local areas 

specially, some right nodes are yielding even earlier than their near left nodes. 
By following two individual particles as shown in Fig.2, the stress paths in J space, shear stress and 

relative velocity can be tracked. From Fig.4a, node 1 begins to be weakening in the 270th year and 
node 3 begins in the 670th year. In the total period, though shear stresses has been weakened, the 

value of the (J2)
1/2 trembles very small. Moreover, they become lower until some time and from this 

time, they begin to rise. For the relative velocity, the unsteady phenomenon can be observed. From 

Fig.4c, the value of the velocity is smaller of 5×10-9 m/s, and occasionally, the magnitudes exceed 
1×10-8 m/s at some time. For most of the total period, it is steady slip. But at some time when there 

are some jumps or drops produced by the weakening of the shear stress, the unsteady slip occurs. 
From Fig.4d and Fig.4e, the biggest magnitude as Gc=1×103 Jm-2 exceeds 2×10-4 m/s and the biggest 

magnitude as Gc=0 Jm-2 exceeds 2×10-3 m/s. Base on the same reason, the unsteady slips emerge, 
and with the decrease of the Gc, the unsteady slips increase. This unsteady phenomenon is as same as 

the results from rock experiments by which the slow earthquake and silent earthquake can be 

Fig.3 Contours of (J2)
1/2 (a)in initial time (b) in weakening of node 1 (c) in 

weakening of node 2 (d) in weakening of node 3 
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simulated. From these experiments, when the stiffness of test machine is K, the dependence of 
frictional traction f and slip displacement u is described with |df/du|, if |df/du|<K, the slip is steady. 

On the contrary, the slip is unsteady. For the case of Fig.4c, the value of the |df/du| is always smaller 
than K in most of the period, so its unsteady slips are very few. On the other hand, for the case of 

Fig.4d and Fig.4e, the order that the value of the |df/du| is larger than K in most of the period 
increases, so the unsteady slip increases. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Fig.4 (a)shear stress (b) (J2)
1/2 (c)relative velocity as Gc=1×105 Jm-2 (d)relative velocity as 

Gc=1×103 Jm-2 (e)relative velocity as Gc=0 with time for element 1 & 3 or node 1 & 3 

Fig.5 (a) shear stress of node 3 (b)relative velocity of node 3 
as Gc=1×104 Jm-2 and Gc=1×105 Jm-2 
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Fig.5a show the weakening processes of node 3 with different values of Gc. If the Gc is larger, the 
weakening time is longer and the magnitude of the relative velocity is smaller as shown in Fig.5b. 

Furthermore, the time beginning to weaken is same nearly. When the simulations are compared with 
different µd while the other material parameters are the same, the case with smaller µd will be 

weaken earlier with shorter weakening period as shown in Fig.6. Even though its magnitude of 
relative velocity is larger, the magnitude order is same. When the simulations are compared with 

different Kt, it is found that the case with larger Kt will be weaken earlier with shorter weakening 
period but its magnitude order of the magnitude of relative velocity is larger as shown in Fig.7. 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
4 Conclusions 

 

From the above numerical simulations, it can be concluded that: 
(1) There are unsteady slips as Gc=0, 1×103 and 1×105 Jm-2, but with the decrease of the Gc, the 

unsteady slips increase.  
(2) When the weakening of the shear stress appears, the second invariant varies hardly, however, the 

variety of the relative velocity is huge. 
(3) When the Kt increases, or the µd decreases, or the Gc decreases, remarkably, the magnitude of the 

relative velocity increases obviously. Moreover, the start time of the weakening process is also 
effected by the material parameters Kt and µd. 
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Fig.6 (a) shear stress of node 3 (b)relative velocity of node 3  
as µd=0.1, 0.2 and µs=0.25 
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Fig.7 (a) shear stress of node 3 (b)relative velocity of node 3 
as Kt=1.2×107 MPa and Kt=5.0×107 MPa 
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