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Abstract

A thermal-mechanical model of shear deformation of a viscoelastic material
as a substitute for frictional resistance is presented. We consider shear defor-
mation of one-dimensional layer composed of a Maxwell viscoelastic material
under a constant velocity U and constant temperature Tw at the boundary.
The strain rate due to viscous deformation depends both on temperature and
and shear stress. The temperature inside the layer evolves owing to the com-
petition between frictional heating and conductive cooling. Our results show
(i) that the sign of dσss/dU , where σss is shear stress at the steady state,
changes from positive to negative as U increases, and (ii) that the threshold
velocity above which the sign of dσss/dU is negative increases with increasing
Tw. These results imply that the downdip limit of seismogenic zones may be
marked by the transition in the sign of dσss/dU due to temperature rise with
depth.

Introduction

It is commonly acknowledged that the reason why earthquakes occur only within the
uppermost part of the Earth, except for deep-focus earthquakes in the subducting slab, is
that ambient conditions, such as temperature, restrict the occurrence of slip instability to
within the shallow portion of the lithosphere. To study the influence of temperature on slip
behavior is, therefore, crucial to the understanding of the locations and/or depth ranges of
seismogenic zones. In this paper, we develop a simple physical model describing slip velocity
and stress to study how temperature affects slip behavior.

Model description

Shear deformation of a Maxwell viscoelastic material, as shown in Figure 1, with an infinite
Prandtl number in a layer of half-width D, is considered. The z-axis is chosen to run across
the sheared layer, and the center and outer boundary are chosen to be z = 0 and z = D,
respectively. We employed a one-dimensional model, i.e. all variables depend only on z and
time t. The temperature T is fixed to be T = Tw at z = D, while an adiabatic condition
is employed at z = 0. The material is assumed to move in the x-direction with a constant
velocity U at the outer boundary z = D, while at the center z = 0 there is no motion. In
the present model, the only nonzero elements of stress and strain rate tensors are σxz(= σzx)
and ε̇xz(= ε̇zx), hereafter denoted by σ and ε̇, respectively.
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Figure 1: Illustration of model used in this study.

The numerical model is developed in a non-dimensional form. The conversion into non-
dimensional quantities is carried out with a length scale of D, time scale of D2/κ (κ is
thermal diffusivity), stress scale of K (shear modulus), and temperature scale of K/ρCp (ρCp

is volumetric heat capacity). The non-dimensional forms of the basic equations are,

∂T

∂t
=

∂2T

∂z2
+ σε̇v, (1)

dσ

dt
= U −

∫ 1

0
ε̇v(σ, T (z))dz, (2)

ε̇v = Cnσn exp

(
−hn

T

)
, (3)

T (z = 1) = Tw, (4)

∂T

∂z
(z = 0) = 0, (5)

where t is elapsed time, ε̇v is strain rate due to inelastic (viscous) deformation, and Cn, n,
and hn are parameters. In the calculations presented below, we chose Cn = 4.69 × 1038,
n = 3.5, and hn = 1.949, which give a strain rate close to that associated with dislocation
creep of dry olivine ([1], [2]).

The basic equations are discretized into a finite difference grid based on the control volume
method [3]. The computational domain was divided uniformly into 2000 mesh divisions.
We carried out both steady-state calculations and time-dependent calculations. When the
purpose is to obtain a steady-state solution, we solved the above equations, after letting
∂/∂t = 0, by the standard shooting method. When the purpose is to obtain a time-dependent
solution, we chose the time stepping δt to satisfy the Courant condition, unless unstable slip
occurs. When unstable slip occurs, we chose δt short enough for the relative stress drop |δσ/σ|
during δt to be less than O(10−2). The time derivative in the energy equation (1) is discretized
by a first-order explicit scheme. The time integration of the equation of stress change (2) is
carried out by fourth-order Runge-Kutta method. The reliability of this numerical code was
verified in Kameyama et al. (1999 [2]).
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Results

We carried out steady-state calculations for various values of Tw and U . (In what follows,
we will only discuss the results of steady-state calculations, although time-dependent solutions
will be discussed in the actual presentation.) We show in Figure 2 the distributions of (a)
temperature T and (b) strain rate ε̇ at the steady state obtained in Case A where Tw = 0.024
and U = 5 × 10−2. As can be seen from the figure, the steady state is characterized by

Case A: Tw = 0.024, U = 5× 10−2
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Figure 2: Plots of distributions of (a) temperature T and (b) strain rate ε̇ at the steady state of
Case A. Parameter values are Tw=0.024 and U = 5× 10−2.

maximum T and ε̇ near z = 0. These distributions are the results from the competition
between frictional heating and conductive cooling. Frictional heating raises the temperature
in the entire layer. On the other hand, conductive cooling from the outer boundary largely
suppresses the temperature rise near the outer boundary z = D while it does not significantly
suppress the temperature rise near z = 0. Because temperature is highest, strain rate is also
highest near z = 0.
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Figure 3: Plots of shear stress at the steady state σss against U for the various values of Tw.

In Figure 3, we show the plots of steady-state stress σss against the shearing velocity U
for various values of Tw. The figure shows (i) that the sign of dσss/dU changes from positive
to negative as U increases, and (ii) that the velocity Uth where the sign of dσss/dU changes
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becomes larger as Tw is higher. In other words, the stability of steady-state slip changes
according to the changes in Tw and U .
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Figure 4: (a) Diagram for the sign of dσss/dU for various values of U and Tw, and (b) plots of
maximum temperature Tmax within the computed layer at against U for the various values of Tw.
In (a), solid circles indicate positive dσss/dU , while solid triangles indicate negative dσss/dU . The
solid contours indicate the logarithm of the rate of frictional heating Φ ≡ σssU .

To see why the sign of dσss/dU changes as U increases, we show in Figure 4 (a) the sign
of dσss/dU for various values of U and Tw, and (b) the plots of maximum temperature Tmax

against U , for the various values of Tw. In Figure 4a, solid circles indicate positive dσss/dU ,
while solid triangles indicate negative dσss/dU . We also show with the contours in Figure
4a the logarithm of the amount of frictional heating Φ ≡ Uσss. Figure 4 shows that the
reason why dσss/dU switches from positive to negative as U increases is because Φ becomes
sufficiently large and Tmax significantly deviates from Tw. When U is significantly low, a slight
increase in U does not sufficiently raise the temperature in the layer, because the amount of
frictional heating does not significantly increase. The effective viscosity is almost unchanged
and, hence, σss becomes higher in proportion to the increase in U . When U is high, in
contrast, even a slight increase in U sufficiently increases Φ and raises the temperature in
the layer. The effect of the decrease in the effective viscosity overcomes the increase in σss

due to the increase in U , and σss decreases as U increases.
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Figure 4 also shows that the reason why Uth becomes larger when Tw is higher is because
a larger amount of frictional heating is required to reduce dσss/dU for higher Tw. As can
be seen from the equation (4), the degree of the decrease in the effective viscosity due to
temperature increase is smaller when Tw is higher. Hence, a larger amount of frictional
heating or, in other words, a higher U is required to sufficiently raise the temperature in
the layer and to change the sign of dσss/dU . By linear stability analysis of the steady state
(Kameyama et al., in preparation), we found that the amount of frictional heating Φc for
dσss/dU to be negative is approximately equal to 2T 2

w/h, which is consistent with Φc shown
in Figure 4a.

Concluding remarks

We develop a simple physical model describing slip velocity and stress based on thermal-
mechanical coupling in shear deformation of a viscoelastic material. We demonstrate (i) that
the sign of dσss/dU changes from positive to negative as U increases, and (ii) that the velocity
Uth where the sign of dσss/dU changes becomes larger as Tw is higher. In other words, for
a given slip rate, the steady-state slip is prone to be unstable for lower temperature, while
is likely to be stable for higher temperature. These results imply that the downdip limit of
seismogenic zones may be marked by the transition in the sign of dσss/dU due to temperature
rise with depth.
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