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Abstract
In this study, existing code for the tectonic loading process simulation at
transcurrent plate boundaries have been parallelized on workstation clusters

using MPI. Matrix assembling and inversion processes have been mainly opti-

mized for parallel computing. 2-way parallelization method has been developed
for local operation both for parameter points and data/integral points. Good par-

allel performance results are obtained.

Introduction

In the tectonic loading process simulation at plate boundaries, boundary integral methods or
boundary element methods are widely used. In these types of methods, assembling and inversion
of large scale dense matrices are required. This matrix assembling and inversion parts are the
most expensive process in the entire computational process from the viewpoint of both computa-
tion time and memory usage. Therefore, utilization of parallel computer is very important and
critical issue in this research area in order to get higher resolution and to treat larger regions for
computational model.
        In this study, existing code[1] for the tectonic loading process simulation at transcurrent plate
boundaries have been parallelized on workstation clusters. In the following sections (1) Outlined
of the Original Code, (2) Parallelization of the Code and (3) Results and Conclusions are de-
scribed.
        In this work we adopted message passing style parallel programming model using MPI[2]

mainly because of its efficiency, portability and robustness.

Physical and Numerical Modeling

Details of the physical modeling of the original code are found in [1]. Therefore just brief outline
of the physical modeling is shown here.
        Under the structure of the lithosphere-asthenosphere system and plate boundary, the physical,
process of the stress accumulation on the plate boundaries are essentially governed by the cou-
pled nonlinear system that consists of (1) fault slip equation, (2) shear stress equation   (3) con-
stitutive relation between shear stress and fault slip. In the method in [1], these coupled equations
are linearlized by the Levenberg-Marquardt type least square method[3]. Large scale dense coeffi-
cient matrices are provided and linearlized equation systems are solved by direct method by
Gaussian elimination[4]. Usually, this type method requires N2 order of memory storage and N3

order of operations for N unknowns. Therefore, parallel computing is important and critical both
for CPU time and memory requirement.
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Parallelization

Profiling
Before starting parallelization, the original code has been analyzed using profiling tool pixie on
UNIX system. According to the profiling results, 96.5% of the entire process are devoted to the
following two processes :

%time       seconds             procedure
   77.2       375.3789         Matrix Assemble
   19.3         93.7490         Gaussian Elimination

This measurement was executed on COMPAQ Alpha 21164 (500MHz) compatible single CPU
workstation with Digital UNIX. The original code was written in FORTRAN90 and compiled by
Digital FORTRAN compiler. In the parallelization process, main efforts will be done in these 2
parts. In this paper, parallelization on the matrix assembling part is mainly discussed.

Matrix Assembling
Original FORTRAN source code for matrix assembling part is shown in Fig.1 (i). There are 3
loops in the code. Inner 2 loops (both for 1-ma) compute coefficient matrix A(i,j) and RHS vector
B(j). Unknowns X are coefficient of spline basis and vector length is ma. Each coefficient is de-
fined on parameter point[1]. The outermost loop (for 1-nada) is for the effect of data points or in-
tegral points. The number of data/integral points are ndata and nada is usually several times as
much as ma.
        According to the FORTRAN source code in Fig.1 (i), the matrix formation process is per-
fectly independent for each parameter point and data/integral point. This means that this operati-
on can be done in very localized manner and suitable for parallel computing. Therefore, the par-
allelization of this process is rather straightforward.

2-way Parallelization
Fig.1 (ii) shows the parallelized source code for the equivalent part written in FORTRAN and
MPI. Original code has been parallelized with very small changes from the original code except
some subsidiary parameters/arrays and MPI messages.
        Each processor stores coefficient matrix in distributed manner as A(ma,maP) where
maP=ma/P, P= Processor Number. Each parameter point is renumbered in cyclic manner in or-
der to avoid load imbalancing during LU factorization during parallel processing[4][5]. Basically
inner 2 loops are almost identical with the original code.
        As is mentioned in the previous subsection, the outermost loop corresponds to the operation
on each data/integral point and the number of data point ndata is larger than that of parameter
point ma. Therefore, operation and storage for data/operation points also should be localized in
order to save memory and computation time. In Fig.1 (ii), the outer most loop is from 1 to  nda-
taP (= ndata/P) and the operation is as follows :

(1) Effect from each data/integral point is calculated locally
(2) At call mpi_allgather message (underlined), value of sig2imat, dymat and dydamat

calculated at each integral point are delivered to each processor
(3) Parallel processes are synchronized at this MPI message and proceed to the inner 2

loops for local matrix

        Before/after the MPI message, perfectly different space is referred for parallel processing.
This type of parallization method is very different from typical finite element type local opera-
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tions such as in [6]. In this study, we call this type of processing as 2-way Parallelization. If there
are N kinds of different types of parameters, N-way Parallelization is required.

Results

Fig.2 shows the parallel performance for (105km X 45km) case with 705 parameter points and
6946 data/integral points using 12X Alpha Cluster connected through 100BT Ethernet. Results
show perfect parallel performance and superlinear effect in many processor cases.

Further Study

(1) Larger scale problem for real plate boundaries including subduction plate models
(2) Fast multipole method and its parallelization
(3) Implementation of iterative solvers with robust preconditioning
(4) Vectorization and optimization on the Earth Simulator (GS40)

(i) Original Code

(ii) Parallel Code using MPI

Fig.1 Parallelization of the Matrix Assembling Part

  do i= 1, ndata
  call FUNCS
  sig2i= 1.d0/(sig(i)**2); dy= y(i) - ymod
  do j= 1, ma
    wt= dyda(j)*sig2i
    do k= 1, ma

      A(j,k) = A(j,k) + wt*dyda(k)
    enddo
    B(j)= B(j) + dy*wt
  enddo
enddo

  do i0= 1, ndataP
    sig2imat= 0.d0 ; dymat= 0.d0 ; dydamat= 0.d0
    i= gfMTBL(i0)
    if (i.ne.0) then
      call FUNCS
      sig2imat(1)= 1.d0/(sig(i)**2); dymat(1)= y(i) - ymod
      do j= 1, ma
        dydamat(j)= dyda(j)
      enddo
    endif
    call MPI_ALLGATHER (sig2imat, dymat, dydamat…)
    do ip= 1, PETOT
      is= (ip-1)*ma
      do j= 1, ma
        wt= dydamat(is+j)*sig2imat(ip)
        do k= 1, maP
          k1 = gMTBL(k); gA(j,k)= gA(j,k) + wt*dydamat(is+k1)
        enddo
        gB(j)= gB(j) + dymat(ip)*wt
      enddo
    enddo
  enddo
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Fig.2  Parallel Performance for (105km X 45km) Region Case
705 parameter points and 6946 data/integral points using 12* Alpha Cluster connected through 100BT

Ethernet(Line: Ideal, Circle: Computation Results)
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