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Abstract

Unsupervised learning techniques provide a way to investigating scientific data
based on automated generation of statistical models that describe the data.
Because they do not incorporate a priori information, they can be used as
an unbiased method to separate data into distinct types. Thus they can be
used as an objective method by which to separate data into previously known
classes or to find previously unknown or rare classes and sub-classes of data.
Hidden Markov models are one type of unsupervised learning method that
are particularly applicable to geophysical systems because they include in the
model the time relationship between different classes, or states of the system.
We have applied hidden Markov models to scientific analysis of seismicity and
GPS data from the Southern California region.Preliminary results indicate that
the technique can isolate distinct classes of earthquakes from seismicity data,
as well as different modes of ground motion from GPS data.

Introduction

In recent years, computerized analysis techniques have become increasingly popular for use
in scientific data analysis (Fayyad, 1996 [1], 1999 [2], Stolorz 1998 [4]). Here we discuss the
application of an unsupervised learning technique to data mining of large geophysical data
sets. By data mining, we mean the process of extraction of interesting information from
the data in cases where: (1) either there is so much data that analysis by hand would be
impractical or even intractable, or (2) in cases where trends in the data may be subtle enough
to evade the notice of a trained human analyst.

Unsupervised learning, also known as clustering, is one approach to such a task. As the
end result of an unsupervised learning algorithm, the data is grouped into several classes
such that data belonging one class is similar to other data in that class but dissimilar to
data in other classes. So, if each data point is viewed as a vector in feature space, then data
points who are members of the same class will appear clustered together in feature space.
Clustering is a useful approach to take in data mining tasks because it does not require that
any of the data be labeled ahead of time; the algorithm is free to determine which data
are related without human supervision. This means that unexpected patterns that might
otherwise be overlooked because of bias can be discovered.

Hidden Markov models (HMMs, Rabiner 1989 [3]) are one type of unsupervised learning
method that are particularly applicable to geophysical systems because they include in the
model the time relationship between different classes, or states of the system. The method
assumes that the data was generated by an unknown statistical process which at each point
in time can be in any one of a given number of states. Each state is associated with a
probability distribution of observable outputs and a set of transition probabilities. These
transition probabilities determine the probability that the system will be in each of the
possible states at the next point in time, given the current state. An iterative approach



is used to find the system model and state sequence that best explain the observed data.
The data can be clustered by using the optimal state sequence: each data vector is labeled
according to the system state at the time the data was generated. The advantage of this
approach is that the end result says more than which data is related to which other data;
it also provides information about the confidence with which each class assignment can be
regarded, and about the relationship between classes in time. For this reason, an accurate
HMM has the potential to provide valuable predictive information if employed in a real time
context.

Algorithm

In order to determine the optimal model and state sequence we employ the standard forward-
backward method. However, this method suffers from a local maxima problem; that is, the
quality of result is dependent on the initial conditions. To overcome this problem, we observe
that the optimization method can be viewed as an variant of the expectation-maximization
(EM) algorithm commonly employed in finite mixture modeling. By adapting the determin-
istic annealing EM method of Ueda and Nakano (Ueda 1998 [5]) to the HMM case, we are
able to develop a deterministic annealing HMM (DAHMM) method whose results are largely
independent of the initial conditions.

Results

In our preliminary investigations, we applied our DAHMM method to GPS and seismicity
data collected in the Southern California region. We present some example preliminary
results in the subsequent figures.

Figure 1 shows the results of the DAHMM method applied to GPS data collected in
the city of Claremont, California. The data used in the analysis is has three components:
east-west displacement, north-south displacement, and vertical displacement. Using a five
state model, the method is able to separate the data into distinct classes that correspond
to physical events. The states before and after the Hector Mine quake of October 1999 are
clearly separated, and distinct in turn from a period in 1998 in which a well caused a change
in the vertical direction. Sharp movements in the north-south direction were also isolated as
a separate class.

Figures 2-4 show the results of the DAHMM method applied to seismicity data taken from
the SCEC catalog. The data used in the analysis had five components: latitude, longitude,
depth, magnitude, and time until next event. As well, in this experiment the data was filtered
to include only events of magnitude greater than or equal to four.

Figure 2 shows a class of earthquakes which includes several major events, including the
Hector Mine and Landers earthquakes.

Figure 3 shows a class of earthquakes of relatively large magnitude and a long time until
next event.

Figure 4 shows the transition probabilities for the class portrayed in figure 3.

Note that the next event is most likely to belong to the class of large earthquakes, class
16. While the relationship between these two classes has not yet been fully investigated,
these examples do demonstrate the potential of this type of analysis.



CLAR hmm plot

or —— Class 1
Class 2
5 N Class 3
5 —— Class 4
3 —— Class 5
or M
_5 Il Il Il Il J
1998 1998.5 1999 1999.5 2000 2000.5
2r —— Class 1

1k Class 2
Class 3

—— Class 4

—— Class 5

north
o
T

_2 1 J
1998 1998.5 1999 1999.5 2000 2000.5
2r —— Class 1
Class 2
ok Class 3
a — Class 4
S —— Class 5
_2 -
-4 I I I I )
1998 1998.5 1999 1999.5 2000 2000.5
float year
Figure 1: HMM analysis results for Claremont, California GPS receiver.
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Class 16 means: lat=35 long=-117.4487 depth=7.1 mag=5.1 days to next event=0.052
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Figure 2: HMM analysis results for Southern California seismicity data.



Class 14 means: lat=36 long=-118.0364 depth=7.2 mag=>5 days to next event=2.2
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Figure 3: HMM analysis results (transition probabilities for Southern California seismicity data.
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Figure 4: HMM analysis results (transition probabilities for Southern California seismicity data.



