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Abstract

Earthquakes have been recognized as resulting from a stick-slip frictional
instability along the faults between deformable rocks. This paper introduces
the recent development of our research activity in the finite element analysis
of the static or quasi-static deformable rocks in contact along the faults with a
laboratory-derived rate and state dependent friction law.

1. Introduction

The earthquakes can be regarded as a contact between deformable rocks with a special friction law
along the faults (e.g. Marone C. 1998). An arbitrarily shaped contact element strategy, named as
node-to-point contact element strategy, was proposed by the authors and applied to handle the
friction contact(even the thermocontact)between deformable bodies with stick and finite frictional
slip(Xing and Makinouchi et al, 1998 a b; 1999 a  b). This paper will focus on how to extend our
algorithm to simulate the active faults. As for the seismic wave propagation, it will be simulated by
a dynamic code (Guo and Makinouchi et al, 1999).

2. Constitutive Equation for Friction Contact

Consider two deformable bodies B1 and B2 with surfaces S1and S2, respectively, to contact on an
interface Sc , and S S Sc = ∩1 2 , S S Sc c

α α= ∩ , where superscript α = 1 2,  refers to body Bα  (as
show in Fig.1).

2.1 General case

 (1). Normal contact stress
We choose the penalty method to treat the normal constraints when contact occurs. For a slave
node,

f E sign g g E gn n n n n n= = −( )                                 (1)

here En  is the penalty parameter to penalize the penetration (gap) in the normal direction, and
gn s c= ⋅ −n (x x ) .

(2). Friction Stress
A standard Coulomb friction model, with an additional limit on the allowable shear stress, is
applied in an analogous way to the flow plasticity rule. And an increment decomposition of the
sticking and the slipping is used. Finally friction stress can be described as follows (Xing and
Makinouchi et al 1998 a, b)(Note: A variable with ~ on top stands for a relative component
between slave and master bodies, and l, m=1,2 in this paper):

f Fm m= η                                                         (2)



where F  is the critical frictional stress, F min f Fn limit= ( , )µ ; Flimit  is a allowable value of shear
stress; µ  is the friction coefficient, it may depends on the normal contact pressure fn , the

equivalent slip velocity ˜̇ueq
sl , the state variable ϕ  and the temperature T , i.e. µ µ ϕ= ( , ˜̇ , , )f u Tn eq

sl .

So, when F fnlimit > µ ,

F f u T fn eq
sl

n= µ ϕ( , ˜̇ , , )                                                (3)
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 is the value of ũm

p  at the beginning of this step.

    In a summary, the linearized form of the friction stress can rewritten as,
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2.2 Rate and State Dependent Friction Laws for Rocks without Temperature Effects

Experimental studies on the frictional sliding in rocks was done and interpreted by Dieterich
(1978,1979) and Ruina(1983) have led to a somewhat more realistic constitutive description.  The
shear strength τ  depends on normal stress σn , slip velocity V  and on the prior slip history in the
form of dependence on a set of phenomenological parameters called state variables ϕi  which
evolve with ongoing slip.  Ruina(1983) stated that

τ σ µ ϕ= + + ( )( )n refa V V0 ln       d dt V L b V Vrefϕ ϕ= − ( ) + ( )( )[ ]ln                      (6)

and for a steady state,
τ σ µss

n a b= + −( ) ( )[ ]0 ln V Vref                                       (7)

where                a V V Vn n= ∂ ∂( ) = ∂ ∂( )τ σ τ σϕ ϕln       a b d d Vss
n− = ( )τ σln                        (8)

Here, a and b are empirically determined  parameters; a represents the instantaneous rate
sensitivity, while a-b characterizes the long-term rate sensitivity. Depending  on whether a-b is
positive or negative, the frictional response is either velocity strengthening or velocity weakening,
respectively. L is the critical slip distance; Vref and V are an arbitrary reference velocity and a

sliding velocity;  ϕ  is the state variables; σn  is the effective normal contact stress; µ0  is the steady
friction coefficient  at reference velocity Vref .

     Replacing V with ˜̇ueq
sl  in the above equations, the friction coefficient µ  can be described in a 3-

dimensional form as
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     From Eqs. (1), (6)-(11),  the contact stress acting on a slave node can be described as

˙ ˜̇f G ui ij j=                                                       (11)

where G is the frictional contact matrix for the rate and state dependent friction law.

3. Finite Element Formulation

3.1 Variational principle

The updated Lagrangian rate formulation is employed to describe the finite deformation problem.
The rate type equilibrium equation and the boundary at the current configuration are equivalently
expressed by a principle of virtual velocity of the form

( )σ σ δ σ δij
J
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where V and S denote respectively the domain occupied by the total body B and its boundary at
time t; SΓ  is a part of the boundary of S on which the rate of traction Ḟi  is prescribed; δ v  is the
virtual velocity field which satisfies the boundary δ v 0=  on the velocity boundary; L  is the
velocity gradient tensor, L v/ x= ∂ ∂ ; D  and W  are the symmetric and antisymmetric parts of L,
respectively.
    The small strain linear elasticity and large strain rate-independent work-hardening plasticity are
assumed to derive the elasto-plastic tangent constitutive tensor Cijkl

ep :
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Substitution of Eq.(13) into Eq.(12) reads to the final form of the virtual velocity principle:
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where ∑ = + − − −ijkl ijkl
ep
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3.2 Contact Force of A Slave Node on Master Segment

To calculate the contact force in Eq.(12), we assume that contact segment surfaces are described by
x x( )= ξm , a slave node s has made contact with a master segment on point c (as shown in Fig. 2),
and the contact force acting on it can be described in the local contact coordinate system as
follows,
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Here Eijm i m j= ⋅e e, , C C C gml ml m l ml n m l= − ⋅ = − ⋅g e ˙ n e, ,
0  , h  is the determinant of Cml , gn

0  is the

penetration of last increment step; D C Cm ll c m ml c l= ⋅ − ⋅u̇ n u̇ n, , ; ˜̇u u̇ u̇= −s c , while u̇c  is the
velocity of material position c on the segment, u̇ u̇c N= γ γ , and u̇γ  is the nodal velocity on the

segment, where Nγ  is the shape function of the segment; êk  is the base vector of local Cartesian

coordinate system on the contact interface. The reverse contact stress acting on a node γ  of a
master segment can be obtained as,

ḟ ḟγ γ
2 = −N = − +( ) +{ }N G C u f E D g hik i jk j k i ijm m n jγ e e ˜̇ e0                     (16)
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Fig. 1 Bodies in contact with each other    Fig.2 Frame for calculation of the contact force

3.4 Time integration algorithm

The time integration method is one of key issues to formulate an elasto-plastic finite element
method. It is well known that the fully implicit method is often subjected to bad convergence
problems, mostly due to changes of contact and friction states. In order to avoid this, we employ an
explicit time integration procedure as follows. It is assumed that under a sufficiently small time
increment all rates in Eq. (14) can be considered constant within the increment from t to t t+ ∆  as
long as there is no drastic change of states (for example, elastic to plastic at an integration point,
contact to discontact or discontact to contact on the contact interface, stick to slide or slide to stick
in friction on the contact interface) takes place. The R-minimum method (Yamada, 1968) is
extended and used here to limit the step size in order to avoid such drastic change in state within an
incremental step.
    Thus all the rate quantities used to derive Eq. (14) are simply replaced by incremental quantities
as,

∆ ∆u v= t ,     ∆ ∆σσ σσ= J t ,     ∆ ∆L L= t                                (17)

Finally, in combination with Eqs. (15)-(17), Eq.(14) can be rewritten as

(K K ) u F F+ = +f f∆ ∆ ∆                                             (18)

Here K is the standard stiffness matrix corresponding to body B; K f , stiffness matrix of the contact

elements, comes from the contribution of the terms related with ˜̇uk  in Eqs. (15) and (16); ∆u is the
nodal displacement increment; ∆F  is the external force increment subjected to body B on SF ;

∆Ff  comes from the contribution of the terms related with gn
0  in Eqs. (15) and (16);

4. Applications

A direct shear ‘sandwich’ experimental model for friction studies is taken as an example to be
investigated without state dependence. Due to the symmetry, only half of it is analyzed here (see



Fig. 3). At first, the body A is loaded along the x direction until ux = ×0 138 0 07. . , then all the
nodes on this loaded surface are fixed along x direction and the body B is moved along y direction.
The stress distribution along the contact interface is not homogenous after the first stage (as shown
in Fig.4).  For the second stage, the relative displacement, the friction coefficient and the relative
velocity at the different positions of the interface are quite different as shown in Fig.5, Fig.6 and
Fig.7, respectively.
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       Fig. 3 The model analyzed            Fig.4 Mises stress distribution( u mm ux y= × =0 138 0 07 0. . , )
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5. Conclusions

The node-to-point contact element strategy proposed by authors based on the static-explicit
algorithm was successfully extended to simulate the active faults with a rate and state dependent
friction law. The applied example shows its stability, efficiency and usefulness. It is being applied
to simulate the practical active faults around Japan.
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