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Abstract

We present results from two-dimensional computer simulations of shearing
granular materials, using a molecular dynamics model. We find that there
are two distinct modes of deformation of granular materials under shear -
“solid-like” characterized by diffuse shear and/or internal shear bands, and
“fluidized”, characterized by persistent boundary layer shear. Deformation
mode is controlled by normal confining stress, system size and velocity, and
possibly by other factors like grain shape etc. The velocity profile is predicted
theoretically. The two modes of deformation are characterized by different
micromechanical measures, but do not differ in macroscopic measures. The
behavior of the weak contacts, and not the stress chains, determine the
overall behavior of the system. This has strong implications to stick and slip
in granular materials as explained in Sparks and Aharonov, this issue.

Introduction

In recent years there has been much work on granular dynamics, with emphasis on the resem-
blance of grain aggregates to solids or fluids, depending on the conditions of the deformation.
In relation to Earthquakes, gouge zones are sometimes thought to be “fluidized” during rup-
ture and theorized to have in this state high porosity, and a low apparent friction. Little
is actually known about this type of behavior since most geophysics experiments result in
“solid-like” deformation, e.g. [1, 2], seen under slow shear and high normal stress. This
second type of behavior results in either diffuse deformation or formation of internal shear
bands. Understanding the response of the micro and macromechanics to different boundary
conditions will help understand the dynamics of granular materials in general, and gouge
zones in particular. Since computer models allow easy excess to a large range of normal
stresses and system sizes, modeling these systems enables investigation of the phase space
and understanding of the global behavior.

We numerically model grain aggregates using a version of the ’discrete element method’ [4,
5] which treats grains as inelastic disks with rotational and translational degrees of freedom.
The numerical model and conditions we use are similar to our previous work [3]. When the
distance between the centers of any two grains is less than the sum of their radii, the grains
undergo an inelastic interaction. During the interaction the grains experience a contact force
that has both shear and normal components. The normal component consists of a linear
elastic repulsive force and a damping force dependent on the relative grain velocities. Shear
forces on contacts are determined using an elastic/friction law [4]. Time is measured in units
of undissipated elastic wave travel time, and distance in units of average disk diameter. We
use non-dimensional units from here on. Simulations are performed on rectangular systems
with nt = nx × ny disks. The top and bottom edges of the box are composed of grains



glued together to form rigid rough walls of length nx (Figure 1). The box is periodic in
the horizontal direction. Grain radii are randomly drawn from a Gaussian distribution. The
system is initiated as a tall loosely packed box, which is compacted vertically by normal
stresses. After compaction and relaxation we apply a confining normal stress N to the upper
and lower walls, and move the top wall in the x direction by applying a constant velocity V0.
The system then evolves spontaneously to have a more or less constant porosity.
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Figure 1: A representative numerical simulation of a granular aggregate. This system contains
approximately 24 x 24 grains, shown as circles. The direction and magnitude of contact forces
between grains is shown by black lines.

Simulation results

shear profiles

Applying different normal stresses results in different shear profiles, and different overall
behavior. The low end of the normal stress regime (N = 1e − 6 in non-dimensional units
which is equivalent to N = 60kPa for glass beads of size 1mm) corresponds to the regime in
which some laboratory experiments [6] are performed: grains suffer little deformation, and
indeed stresses are low enough to generally not result in grain breakage under experimental
conditions. The highest normal stress we used (N = 1e − 3, equivalent to N = 60MPa) is
appropriate for geophysical simulations, corresponding to a burial depth of 2 km. Under the
highest normal stresses, some of our numerical grains suffer a small “elastic deformation”
approaching 0.5% of a grain diameter. In experiments of shear in rocks or glass beads grain
breakage often occurs at these stresses [7].

Under low load all deformation is localized near the moving boundary, (in agreement with
experiments [6]) and it remains there for the duration of the run. In contrast, under high
normal stresses deformation is either diffuse with nearly evenly distributed shear, or localized
in shear bands which can appear at any depth. The shear bands have a characteristic width
of 10-20 grains. Under high normal load the system spends about half the time in localized
motion and the other half in distributed shear. The location of an individual shear band may
persist for times ranging between 250-25000 time-steps, which is equivalent to motion of the



upper wall over a distance of 0.2-20 grain diameters. Once a shear band dies a new one may
appear at any subsequent time and at any depth. The distribution, duration and location of
localization events is not trivial and merits future studies.

We use the terms ”fluidized” or ”solid-like” to distinguish simulations in which shear
rate decreases consistently with distance from the moving boundary, from those in which
internal shear bands or diffuse shear appear. We look at long time averages (over 2 ∗ 106
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Figure 2: Long-time averages of boundary parallel (horizontal) grain velocities as function
of depth. Open symbols are from runs with v0 = 10−4 and closed from runs with v0 = 10−3.
Note that velocity axis is logarithmic for the fluidized runs and linear for the solid-like runs.
Three different box heights, ny = L = 24, 48, 96, were used, as well as confining loads ranging
between N = 10−6 − 10−3.

time steps, or an upper wall displacement of about 100 grains) of the horizontal component
of grain velocities, plotted as function of distance from the shearing wall (Figure 2). In
solid-like simulations (Figure 2 right panel) long time averaging of grain velocities shows
completely distributed shear. Mean horizontal grain velocities decay nearly linearly away
from the moving boundary, demonstrating that transient shear bands in the system truly
occur at random depths, which over time average out to a uniform shear. Note that in
natural systems breaking may lock the shear bands in one position. In fluidized simulations
(Figure 2 left panel) velocity decays roughly exponentially away from the moving boundary.

We fit the fluidized velocity profiles in the left panel using a theoretical prediction which
assumes that grain fluctuations (granular temperature) result from shear created by the
moving boundary. This “heat” diffuses away from the energy source and into the layer.
Details of the calculation are given in [8], and are shown there to also agree with experiments
performed under low confining load. The basics of this theory is applicable also to the solid
regime, but fitting of theory to simulation profiles is complicated by the transient internal
shear.



phase diagram

The box height (layer thickness in units of average grain diameter) is important in determining
where the transition between the solid-like and fluid-like behaviors occurs- the taller the box
the easier it is to fluidize (figure 2). Figure 3 schematically shows the phase diagram in box
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Figure 3: Schematic phase space for the two different behaviors of the system: fluidized(O)
or solid-like (X). As the box gets bigger it is easier to liquefy the aggregate even under higher
normal stresses. Wall velocity also effects the phase boundary.

size versus confining normal stress. In all the runs, boundary velocity, V0, was set to 10−3.
We see an indication that increasing shear velocity will cause the phase boundary to migrate
to the left.

It is curious that there is not much difference between macroscopic measures obtained
from systems with the boundary shears and systems with internal shears. For example, the
variation of time-averaged porosity among all the simulations is less than one percent, and
the variation is not systematic. Porosity in low normal stress runs may be either higher or
lower than porosity in high normal stress runs, depending on the individual runs.

Micromechanics

It is now recognized that force and velocity heterogeneities exist on all scales in granular
systems [9, 10]. The largest contact forces between two grains is typically several times the
mean force in the system. The contact forces have an exponential probability distribution,
with the rarer highly-stressed contacts grouped in a network of intersecting lines of particles
termed force chains [11]. We show that micromechanical measures, obtained from measure-
ments on individual contacts, are good predictors for the emerging rheologies. In this section
we present results from two test runs using a box of 96 ∗ 48. A solid-like case with confining
stress of N = 10−3 and a liquid-like case with N = 10−5. We look at a subset of contacts
between grains carrying a normalized force (normalized by the mean contact force in the sys-
tem) smaller than a cutoff value (f < ξ), and call this subset the “ξ network”. For example
forces belonging to the network of ξ = 1 are forces smaller than the mean force. We follow
closely the method suggested by [10].

The contact network that forms is characterized by the probability density function E(θ, ξ)
of finding contact with direction θ in the ξ network. The contact angle θ is measured from
the horizontal axis. E(θ) may be represented by a Fourier series containing even components



and can be written as [10] E(θ, ξ) = 0.5(1 + Ac(ξ) cos(θ − θc(ξ))). The coefficient Ac is the
amplitude of anisotropy, while θc is the principal direction of the contacts in the ξ network.
In both solid and fluidized cases the direction of anisotropy of the entire set of contacts (i.e.
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Figure 4: a) Principal contact directions θc b) Amplitude of anisotropy Ac, c) The deviatoric
stress Q, d) Proportion of sliding contacts in the ξ network for the liquid case, blue, N = 10−5,
and solid case, red, N = 10−3

at ξ → ∞) is about 45 degrees from horizontal (Figure 4 A), in the expected direction of
maximum compression. This direction is due to orientation of the ”strong” contacts, those in
force chains. Surprisingly, the difference between the solid and fluidized cases is in the weak
contacts ξ < 1. In the solid case there exists a bimodal distribution of contact orientations:
the weak forces with ξ < 1, have an orientation of 135 degrees, which is perpendicular to the
direction of maximum compression. These are the contacts that contribute to the rigidity of
the system and prevent buckling of the chains. In the fluidized system, the weak contacts do
not provide the rigidity required for the system, since they are not oriented at the normal
direction to the strong contacts and therefor there is no “mesh” which can be a rigid structure,
but just a collection of rods, which can freely rotate. In viewing the direction of contacts
the degree of anisotropy Ac must also be considered (Figure 4 B). Ac = 0 means randomly
distributed contacts and any value of θc in cases of a small Ac is not meaningful. In the
solid case the degree of anisotropy is large for the weak contacts and for the entire contact
network. For the fluidized system, the anisotropy is less pronounced for all of the ξ < 1
networks, i.e. the weak contacts are more randomly arranged.

The deviatoric load, Q = (σ1 − σ2)/(σ1 + σ2), carried by the ξ network also is different
between solid and liquid cases. Figure 4 C shows that although the total deviatoric load the
system carries (i.e. ξ → ∞) in the fluid-like and solid-like systems are the same, the solid



system has a bimodal distribution of contacts, with strong contacts ξ > 1 carrying the load,
while the weak phase behaves as an interstitial fluid which supports only the pressure. In
the system under the lower confining load the deviatoric load is carried also by the weakest
contacts, and there is no bi-modal distribution.

When investigating the proportion of sliding contacts, Figure 4D, in both systems a larger
proportion of the weak contacts slip than the strong contacts. It is not surprising, since they
will be closer to the Coulomb sliding condition at any given shear stress value, since the
normal force on them is smaller. This is in agreement with simple shear [10] simulations.
However what is surprising is that frictional slip is prevalent much more in the liquid system
than the solid system. It is common to refer the more gas like systems as collision-controlled
and the more solid like systems as frictional controlled. It is interesting that this approach
is intuitive but erroneous- in the liquid systems much more friction dissipation is going on
than in the solid systems, where perhaps rolling is a prevalent mode of deformation. This
is also consistent with the fact that the solid-like simulations have a slightly lower apparent
friction than the fluid-like simulations (again, somewhat contrary to prevalent ideas).
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