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Abstract  

We examine the influence of the migration of chemical constituents, driven by 
gradients in normal stress, upon the evolution of fold geometry in anisotropic, linearly-
viscous, multi-layered materials. The layering consists of an alternating sequence of 

high viscosity, chemically mobile rock and lower viscosity, chemically immobile rock. In 
a natural analogue, the high viscosity, chemically mobile layers could be quartz rich 
whilst the low viscosity, chemically immobile layers could be mica rich The 

deformation is assumed to be incompressible, with temporarily and spatially evolving 
volume fractions of the mobile and immobile constituents. We present a large 
deformation formulation for a layered, viscous material.. The particle-in-cell finite 

element method combines many of the advantages of traditional finite elements with 
the geometrical flexibility of pure particle methods. The method is particularly suitable 
for problems involving very large deformation without the need for re-meshing.         

Introduction 

Within the geological record there is evidence of numerous processes where creeping flow of 
solid materials dominates the deformation. We often only see this evidence once the region has 
been uplifted, eroded, and exposed, so evidence for deformation is indirect (deformed material 
interfaces, physically or chemically modified grain size distributions and so on). One of the most 
successful ways to understand these long-completed deformation processes is forward modelling 
from the proposed initial state following material interfaces and the temperature / pressure/ stress 
and chemical histories of material elements. In the following we revisit a subject which has 
attracted significant attention from the structural geology community over the past 25 years, 
namely, pressure dissolution fuelled mass transport during inhomogeneous, and in particular, 
buckling-type deformations. 

Geological motivation 

There are many examples in deformed rocks where segregation of chemical constituents has 
accompanied the deformation of rocks. The process was first documented in deformed rocks by 
Sir Charles Darwin in the first half of the nineteenth century who described mineralogically 
differentiated layering associated with slaty cleavage cross cutting bedding and parallel to the 
axial planes of folds.  Examples in the literature span the complete spectrum from simple 
segregation of material in the spaces between boudins through transport of material from the 
limbs to the hinges of folds, through to segregation of contrasting mineralogies during the 
formation of slaty cleavage, schistosity, and, in particular, crenulation cleavage. We are 
concerned with such metamorphic differentiation processes accompanying the folding of multi-
layered materials and the influence these processes have upon the evolution of fold geometry.  
 
 We examine the influence of the migration of chemical constituents upon the evolution of fold 
geometry. Chemical migration is driven by gradients in the normal stress across the layered 



material and there is a feedback relation between the segregation of chemical species and the 
rheology of the multi-layered material undergoing folding. In particular, since the most common 
forms of metamorphic differentiation occur in highly anisotropic rocks, we concentrate on the 
folding of muti-layered, anisotropic, viscous materials. The folding is driven by the contrast in 
shear viscosities measured parallel to the layers rather than the more common situation in the 
literature where the folding is driven by contrasts in the “normal” viscosities between the layers. 
Migration of chemical constituents is driven by the gradients in normal stress that arise as the 
layers change orientation during folding. The changes in rheology that arise because of chemical 
migration have a feedback on the folding process so that changes in fold geometry arise during 
the segregation process. We explore the growth of non-periodic fold trains. Here we introduce 
viscosity softening during deformation, resulting in the development of localized shear zones 
which control the position of fold hinged in subsequent deformation. This process leads to the 
development of non-periodic fold trains. 

Numerical method 

The problems of interest all involve very large deformations. Simulation algorithms must 
therefore be able to deal with very large strains associated with the folding and compositional 
evolution, while faithfully tracking material history and interfaces. Versatility and robustness are 
usually associated with the various formulations of the Finite Element Method (FEM). The need 
to track material history strongly suggests a Lagrangian formulation, which provides a reference 
frame, locked with the material itself. Unfortunately, large deformations are quite difficult to 
handle within the FEM because mesh distortion and remeshing are required to maintain optimal 
element configurations. The Particle-In-Cell (PIC) scheme is a hybrid numerical method which 
falls somewhere between the Finite Element Method (FEM) and a purely Lagrangian particle 
method such as the Discrete Element Method (DEM). The PIC scheme attempts to combine the 
versatility of the continuum FEM with the geometrical flexibility of DEM. In PIC we use 
Lagrangian particles together with an Eulerian mesh as shown schematically in Figure 1. The 
mesh is used to solve nodal point velocities and pressures using almost exactly the same 
formulation as the standard FEM, however, the mesh is not required to track material 
deformation , thus avoiding the problem of mesh distortion. For problems where displacements 
are needed, the particles are used to integrate velocities and carry configuration information. 
Where internal orientations need to be tracked, as in this case, they are represented on the 
particles and integrated into a stiffness matrix for each element. Moresi et al., (2000 [1]), give 

 
Figure 1. A schematic of the particle-in-cell approach for modeling interfaces and material 

orientation variations during the evolution of the solution geometry. The mesh is fixed while the 
particles flux through. 



Mathematical formulation 

From a mechanical point of view, the salient feature of layered materials is that there exists a 
distinguished orientation given by the normal vector field ),( txn ki  of the layer planes, where 

),,( 321 xxx are Cartesian coordinates, and t is the time. We assume linear viscous behaviour and 
designate with η the normal viscosity and ηS the shear viscosity in the layer planes normal to ni . 

The orientation of the normal vector, or director as it is sometimes called in the literature on 
oriented materials, changes with deformation. Using a standard result of continuum mechanics, 
the evolution of the director of the layers is described by 
 
 Ý n i = −vk ,i nk + (v j ,k n jnk )ni    (1) 
 
where the superscribed dot designates the material time derivative, vi are the components of the 
velocity vector, and the comma followed by an index denotes partial differentiation with respect 
to the indicated Cartesian coordinate. 
The most convenient way to derive the stress-stretching relation is to write down the strain rate 
potential with tensor components referred to Cartesian coordinates chosen parallel to the material 
symmetry axes. The gradient of the potential with respect the stretching components referred to 
the global system is obtained as: 
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Here ijD  is the symmetric part of the velocity gradient (the stretching tensor),  
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is the deviator of ijD , δij is the Cartesian metric or unit tensor, p is the pressure or average stress, 
taken positive in compression as is usual in geology and ∆η=η−ηS. The matrix representation of 
(1) and (2) is given in the Appendix for easy reference. We complete the constitutive description 
with an assumption regarding the rate of volume change. The usual assumption is of course 

0=kkD which is entirely appropriate for most problems involving large deformations. Elastic or 
shear strain controlled dilatancy relations as used in soil mechanics are not relevant at the time 
and deformation scales envisaged here. However there is ample evidence for significant mass 
transport in folded rocks where the transport can not be readily explained on the basis of 
conventional constitutive concepts (e.g. Hobbs et al 1976[2]). A widely accepted explanation for 
such changes in local composition is that matter (usually quartz) is dissolved along layer 
interfaces with relatively large normal stress and precipitated along interfaces with relatively low 
normal stress. Dissolution and precipitation provides a positive feedback to the folding process 
itself.  
 
We propose that the net volume change is zero however we admit local changes in composition 
and mass transport. Before we put this into equations we have to specify the rheological nature 
of the layering. We consider an alternating sequence of high viscosity and low viscosity 
materials which are chemically mobile (dissolvable) and immobile respectively. The volume 
fractions are φm and φimm, φm+φimm=1 and the viscosities are given as (e.g. Biot, 1964[3]; Johnson 
and Fletcher, 1994[4]): 
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The total velocity in (1) and (2) is the weighted average of the velocities of the two constituents, 
whereby the volume fractions are the weighting functions. Assuming that the total volume and 
hence the total density is constant yields: 
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However, within the confines of (6), the volume fractions may vary spatially and temporarily. 
We complement (6) by a mass conservation equation for the mobile constituent. We assume that 
the material time rate of the volume fraction φm is controlled by the in-layer gradient of the 
normal stress traction. This expresses the observation that the layer interfaces serve as conduits 
for mass transport, fuelled by pressure dissolution at the layer interfaces. We have: 
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where k is the in-layer permeability, dimension (length)2, E is the Young’s modulus, τ is the time 
scale at which the mobile phase dissolves in the interstitial fluid under stress and λ is a matching 
parameter. If  nT=(0,0,1) and the parameters k and ηm are constant then (7) reduces to 
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Mass transport does not take place if the in-layer Laplacian of the normal stress vanishes; the 
phases are in equilibrium with their own solutions. If gradients exist, the mobile phase is 
transported down the normal stress gradient. In folding scenarios this means transport away from 
the limbs-towards the hinges. In (2) and (8) we have tacitly assumed that ijσ  is equal to the 
effective stress. In the following examples we will always assume that the excess pore pressure is 
equal to zero at the time scale of the processes of interest. Inclusion of pore fluid flow would 
merely complicate the algebra.  

Numerical simulations 

We present an example of a simulation of folding of a layer of anisotropic viscous material 
sandwiched between two isotropic layers. The ratio of normal viscosity between embedded layer 
and the background is a factor of 20. The shear viscosity of the central layer is one fortieth of the 
normal viscosity.  The orientation of the internal layering is approximately parallel to the 
macroscopic layering of the system with some small perturbations (δθ ≤ π / 50 ) have been 
introduced at a very fine scale. The assumption is that the sample represents a pristine geological 
formation with no prior deformation history recorded in the layering so that any folding response 
is not biased to an imposed lengthscale. The boundary conditions in this case are slippery, 
undeforming boundaries on the vertical sides and the base, and a free surface at the top of the 
layers (not shown). No density variations are assumed in this case. 
 
 In a simulation with purely isotropic materials, the viscosity contrast between the embedded 
layer and the background is insufficient to observe any  folding for a simulation with 50% 
shortening.   
 



In Figure 2, the influence of anisotropy in the embedded layer can clearly be seen. Fine scale 
perturbations to the layer orientation develop very early in the shortening, and soon amplify into 
disturbances in the layer interfaces. The amplification disrupts the periodicity at an early stage so 
that the deformation of the interfaces occurs at a number of different wavelengths. After 
approximately 30% shortening, a dominant wavelength is apparent in the folding, but smaller 
scale structure inhereted from the early stages of folding is still present and continues to grow. 
This results in an extremely complex deformation pattern at the termination of the experiment.  
 

  
Figure 2. An embedded layer of anistropic viscous material embedded in an isotropic, low 

viscosity background undergoes 50% shortening. 

 



These behaviours can be understood with the help of a linear instability analysis which predicts 
the modes of instability in the small deformation limit. The competition between these modes is 
played out as the deformations become large, however, which is the natural domain of 
computational simulation.   

Summary 

We have presented a simple formulation for the inclusion of chemical migration into deforming 
layered systems. The combination of the basic model with a large deformation, particle-in-cell 
finite element method allows the simulation of a diverse range of crustal deformation problems. 
Our demonstration examples include a realistic treatment of folding which includes the 
mechanical influence fine-scale laminations and the dissolution/precipitation of soluble materials 
during deformation. A linear instability analysis gives a good insight into the expected modes of 
deformation at the onset of instability. Further simulations which include the effects of chemical 
transport will also be presented. 
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