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Abstract

This paper presents the macro-micro analysis for the prediction of the strong
motion distribution in a metropolis (Ichimura and Hori, 2000[1] and Hori and
Ichimura, 2000[2]). The key features of the method are the stochastic mod-
eling of the crust and ground structure and the multi-scale analysis for higher
spatial and time resolution. The formulation of the macro-micro analysis is
presented. An actual earthquake is simulated, and the results are compared
with measured data, showing the basic of validity of the macro-micro analysis.

Introduction

The prediction of the strong motion that is caused by a huge earthquake is a key issue for
earthquake engineering. A more accurate estimate is needed for dynamic analysis of structure
or for the micro zoning of earthquake hazards. Since the strong motion is the final phase
of an earthquake, the prediction must account for the propagation through crust and the
amplification near ground surfaces as well as the initiation at a source fault.

There are two major difficulties in numerically simulating the propagation and amplifi-
cation processes. The first difficulty is the uncertainty of the crust and ground structures.
Due to the limitation of quality and quantity of the measurement, the underground struc-
tures are not fully determined. The second difficulty is the computational complexity that
increases drastically as higher accuracy and resolution are needed. The length scale required
for engineering purposes is of the order of 1m, which leads to a huge amount of discretization
in computing.

Recently, the authors have been proposing a new analysis method to predict the strong
motion distribution in a metropolis. This method is called macro-micro analysis, and has
the following two key features:

1. bounding medium theory: As an alternative of a deterministic model, a stochastic
model is used for the underground of a metropolis. The bounding medium theory
determines two fictitious but deterministic bodies for the stochastic model, such that
their responses provide both optimistic and pessimistic estimates of the mean behavior
of the stochastic model.

2. singular perturbation expansion: The singular perturbation expansion is applied
to a displacement field to reduce computational efforts by carrying out a multi-scale
analysis. The displacement is given as the sum of the first order solution with lower
spatial resolution for the whole city and the second order solution of higher spatial
resolution for each small part of the city.

Figure 1 presents a schematic view of the macro-micro analysis.
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Figure 1: Key features of macro-micro analysis.

Formulation

The bounding medium theory is general as it is applicable to various physical problems which
are described in a variational form. As the simplest example, we consider a stochastic model
for a linear elastic body V with varying elasticity cijkl at quasi-static state. One bounding
medium is determined as

c+
ijkl(x) = 〈cijkl〉(x), (1)

where 〈 〉 stands for the stochastic mean. This is because the following inequality holds for
the mean of the total strain energy, denoted by 〈E〉, of the stochastic model:

〈E〉 = 〈J(ue, c)〉 < 〈J(u, c)〉 = J(u, 〈c〉).
Here, when cijkl is realized for the stochastic model, J is the potential energy (J =

∫
V

1
2
cijkldjuidluk dV

with di = ∂/∂xi) and ue
i is the displacement field. Another bounding medium is found by

considering the complementary potential energy, as

c−ijkl(x) = 〈(c)−1
ijkl〉−1(x). (2)

It should be emphasized that c±ijkl given by Eqs. (1) and (2) provide bound for 〈E〉 of the
quasi-static state. We use these media for the dynamic state, assuming that the inertia effects
are not dominant.

Once the bounding media are given, we take singular perturbation expansion for dis-
placement, introducing a slow variable Xi = εxi with ε, which gives the ratio of the ground



structure length scale and the crust structure length scale. Denoting by cijkl and ρ the elas-

ticity and the density of the bounding medium, we arrive at uI ≈ u
(0)
i (X, t) + εu

(1)
I (X,x, t),

and the first and second terms satisfy

Di(CijklDlu
(0)
k ) − Rü

(0)
j = 0, (3)

di(cijkl(dlu
(1)
k + Dlu

(0)
k )) − ρ(ü

(1)
j = 0, (4)

where cijkl is either c+
ijkl or c−ijkl, Cijkl and R are the effective elasticity and density given

by cijkl and ρ, and Di and di are Di = ∂/∂Xi and di = ∂/∂xi, respectively. In numerical
computation, Eq. (4) is reduced to

di(cijkl(dlu
(1)
k + dlu

(0)
k )) − ρ(ü

(1)
j + ü

(0)
j ) = 0, (5)

by changing the argument of u
(0)
i and dropping ε for u

(1)
i . The analysis of computing u

(0)
i and

u
(1)
i are called the macro-analysis and the micro-analysis, respectively.

In numerically solving Eq. (3) and Eq. (5), we apply the voxel finite element method
(VFEM) to reduce required memory storage. The VFEM discretizes the medium using
identical cubic elements which have a common element stiffness matrix, and hence increases
the computational efficiency using an iterative solver. We are also studying the boundary
element method implemented by the fast multi-pole method to solve Eq. (3), which could
be most efficient in solving a three-dimensional dynamic problem.

Results of computation

Validity of VFEM for dynamic problem

First, we examine the validity of the VFEM to solve dynamic problems. Three-dimensional
wave propagation caused by an explosion source is solved. The key settings of the simulation
are the Wilson θ method for the time integration and the paraxial boundary conditions for
artificial boundaries. The element dimension is 240×240×240m and the P wave velocities
are 5200m/s.

The numerical results are compared with the analytical solutions. The results are pre-
sented in Fig. 2. It is seen that the VFEM can compute the wave up to 2Hz, which means
that a harmonic wave of wave length 2600m is computed by using the discretization of 240m.

a) time domain b) frequency domain
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Figure 2: Comparison of numerical solution and analytical solution.



Results of macro-micro analysis

Next, we carry out the macro-micro analysis for an actual earthquake; see Table 1. The data
measured at six sites within the Yokohama City are used for the comparison; see Fig. 3 for
the locations of sites and the bounding media for the macro-analysis and the micro-analysis.

Table 1: Properties of earthquake.
Lat. Long. Depth Strike Dip Rake Mag.
35.4N 149.8E 53km 62o 85o 73o 4.0Mw

Figure 4 a) presents the comparison of the macro-analysis with the measured data; the
optimistic bounding medium is used and velocity in the time domain is plotted. Since the time
resolution is 1.2Hz, we filter higher frequencies in the figure. The agreement is satisfactory
even though the simplest Haskell model is used for the fault mechanism. Therefore, the
macro-analysis can simulate the wave propagation process to some extent of the accuracy
and the resolution. However, the site effects on the wave amplification is not well simulated;
see Fig. 5 for the velocity spectrum.

Figure 4 b) presents the comparison of the micro-analysis with the measured data. While
the two bounding media do not bound the measured data, the wave profile is close to them.
Figure 6 plots the velocity spectral distribution of the six site. As is seen, the site effects are
simulated in the micro-analysis that modifies the macro-analysis by accounting for the local
ground structures.

Concluding remarks

The results of the numerical simulation shown in the preceding section supports the basic
validity of the macro-micro analysis. The two bounding media needs to be interpreted such
that the results could be used for the practical purposes; for instance, the average and the
difference of the two media may be understood as an approximation of the mean and the
variance of the stochastic behavior.

In order to obtain the reliable prediction, we still need to increase the discretization used
in the macro-micro analysis. Numerical techniques for the efficient parallel computation will
be studied. Also, the macro-micro analysis will be implemented for the function of analyzing
non-linear behavior of ground surfaces.
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Yokohama City observation site: as06

10[km]

source

is06

hd06

30[km]

40[km]

70[km]

N

mate.2

mate.1

mate.4

mate.3

1 2 3 4

� [m/sec] 1040 1730 2950 5200

� [m/sec] 600 1000 1700 3000

� [kg/m
3
] 1800 2000 2300 2500

80[m]

100

400

200

500

300

b[m/s]

600

80[m]

40[m]

a) Yokohama City and observation sites

c) model for micro-analysisb) model for macro-analysis

pessimistic

optimistic

Figure 3: Model of macro-micro analysis; a) for the observation sites, b) for the macro-
analysis model and c) for the micro-analysis model.
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Figure 4: Velocity at as06 obtained by macro-micro analysis.
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Figure 5: Velocity spectrum obtained by macro-analysis.
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Figure 6: Velocity spectrum obtained by micro-analysis.


