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Abstract

In order to develop a realistic model for the earthquake nucleation to dynamic
rupture with prediction capability, it is essential to incorporate the physical scale
dependence into the model. This can be attained if geometric irregularity of the
rupturing surfaces is properly incorporated into the model, and if the governing

law for earthquake rupture is formulated as a slip-dependent constitutive law. It

is shown that scale-dependent physical quantities, such as the breakdown zone

size, the nucleation zone size, the apparent shear rupture energy, and the slip
acceleration, inherent in the shear rupture in a broad scale range from 10 210 10°
m can be understood unifyingly and consistently in terms of a laboratory-based
slip-dependent constitutive law in the framework of fracture mechanics.

Introduction

Rupture (or fracture) phenomena, including the earthquake rupture, are observed in a very broad
range from an atomistic scale, through a microscopic scale, to a macroscopic scale. Laboratory-
scale rupture, including the shear fracture of intact materials and the frictional slip failure on a
pre-existing fault, may roughly be of the order off20 1 m, whereas field-scale rupture, in-
cluding micro- to large earthquakes, may be of the order bfd QG m. It is widely recognized

that some of the physical quantities inherent in the rupture are scale-dependent. In order to de-
velop a realistic, physical model for the earthquake nucleation to dynamic rupture with prediction
capability, it is therefore essential to incorporate the physical scale dependence into the model.
The theme of the physical scaling dependence has been addressed at the ACES inaugural work-
shop held in Brisbane and Noosa, Australia, and | emphasized there that the governing law (con-
stitutive law) should be formulated so as to scale scale-dependent physical quantities inherent in
the rupture, and thereby a unified comprehension should be provided for the shear rupture of any
size scale which continuum mechanics encompasses — small scale in the laboratory to large scale
in the Earth as an earthquake source. This can be attained for the shear rupture if geometric ir-
regularity of the rupture surfaces is properly incorporated into the model, and if the governing
law for the shear rupture is formulated as a slip-dependent constitutive law. These two are the key
to scaling scale-dependent physical quantities inherent in the shear rupture. In this paper, it will
be shown how unifyingly and consistently scale-dependent rupture phenomena in a broad scale
range from 18to 16 m can be understood in terms of a laboratory-based constitutive law.

A constitutive scaling law

It has been established that the earthquake source at shallow crustal depths is a shear rupture in-
stability that takes place on a fault characterizethhgmogeneitiege.g., Aki, 1984[1]). An in-



homogeneous fault includes local, strong patches of high resistance to rupture growth. Such
strong patches are needed for an adequate amount of the elastic strain energy to be stored in the
surrounding medium, which is necessary as a driving force to bring about a large earthquake.
Strong patches of high resistance to rupture growth are also needed for generating strong motion
seismic waves. If a fault is very weak everywhere on the entire fault, litle amount of the elastic
strain energy will be stored in the surrounding medium, so that a large (or strong) earthquake
cannot be generated. Thus, the presence of strong patches is required on the fault. In addition,
there is a very important, physical constraint imposed on the patch strength; that is, the upper end
member of the patch strength is the shear fracture strength of initially intact rock. Therefore, if
there is a constitutive law that governs the earthquake rupture, the law should be formulated as a
unifying constitutive law that governs both frictional slip failure and shear fracture of intact rock
mass.

As discussed at the ACES inaugural workshop, the physical constraint mentioned above ne-
cessarily leads to the conclusion that the constitutive law for the earthquake rupture should be
formulated as a slip-dependent constitutive law. This is because it is a slip-dependent constitu-
tive law that governs the shear fracture process of initially intact rock. The slip-dependent con-
stitutive law is a unifying law that governs both frictional slip failure and shear fracture of intact
rock. Indeed, it has become increasingly clear that laboratory data on both frictional slip failure
and shear fracture of intact rock are unified consistently by a single law of slip-dependent con-
stitutive formulation. A slip-dependent constitutive relation is uniquely specified by the following
five parameters: the initial strengthon the verge of slip at the rupture front, the peak shear
strengtht, attained at the slip displacemeDdy, the breakdown stress dray, defined as the
stress difference betweep and the residual frictional stress, and the breakdown slip displace-
mentD, defined as the critical amount of slip required for the shear strength to degrade to the
residual frictional stress. The slip-dependent constitutive formulation presumes the slip dis-
placement to be an independent and essential variable, and the rate- or time-dependence to be of
secondary significance. Thus, the shear traction is expressed as a function of the slip displace-
ment in this formulation, and the parameters prescribing the law, sughtas\t,, andD,, are
assumed to be an implicit function of the rate or time (Ohnaka et al., 1997[11]).

It has been found that the constitutive law parameters:,, andD, (or equivalentlyD,,. = D,

- D, are interdependent, and that they are mutually constrained by the following relation:

Atplt, = B(DC/kC)M Q)
or
A‘Eb/‘tp = B,(DWC/XC)M (2)

where 3, B’ and M are numerical constants determined from laboratory experimpafis6(
p’=2.1, andM=1.2 for granite rock in the brittle regime), alhddenotes the characteristic length
representing a predominant wavelength component contained in geometric irregularity (rough-
ness) of the rupturing surfaces. It has also been found that laboratory data on both shear fracture
of intact rock and frictional slip failure are unified consistently by a single relation (1) or equiva-
lent relation (2).

Rewriting relation (1) leads to

D, = m(At, /T,)A, 3
wherem(At, /1, )is a dimensionless parameter expressed as a functitr,bf, as follows
m(Aty/x,) = (WBY™ (A c, (4)
Similarly we have
D,.. = (B/B')" m(At, /7,)1 (5)

and



D, = [L- (3/p)" I(ac, /7, )2, (6)
Relations (3), (5) and (6) show that all the displacement paranietdds., andD, scale withi,
since At,/t, is scale-independent. The slip-dependent constitutive law includes these scale-
dependent displacement parameissD,,., andD,, and hence the constitutive law for the shear
rupture is inherently scale-dependent. This scale-dependent property of the constitutive law is
essential for describing scale-dependent rupture phenomena in quantitative terms.

Scaling scale-dependent physical quantities inherent in the rupture

As noted elsewhere (Ohnaka and Shen, 1999[9]), there are in general two classes of physical
guantities inherent in the shear rupture: scale-dependent quantities and scale-independent quanti-
ties. The scale-dependent quantities include the breakdown zone size and its duration (break-
down time), the nucleation zone size and its duration, the apparent shear rupture energy, the slip
acceleration, and the cutoff frequency of the power spectral density of the slip acceleration versus
time record observed at a position on the fault. These scale-dependent physical quantities can be
treated unifyingly in quantitative terms by formulating the constitutive law for the shear rupture
as a slip-dependent law so as to meet the physical principles and constraints to be imposed on the
law. In fact, those scale-dependent quantities are expressed theoretically in terms of slip-
dependent constitutive law parameters includingn the framework of fracture mechanics. For
instance, the breakdown zone skeand the critical sizel2 (L., half length) of the nucleation
zone are expressed in termsAaf andD, (Ohnaka and Yamashita, 1989[10]; Ohnaka and Shen,
1999[9]; Ohnaka, 2000[8])

Xe=Lc= (]jk)(“/ATb)Dc (7)
wherek is a dimensionless parameter depending on the rupture velocity, snthe rigidity.
The apparent shear rupture ene@yylefined by (Palmer and Rice, 1973[12])

G, = [[(D)-1,]dD ®)

is also expressed in termsAf, andD, as (Ohnaka and Yamashita, 1989[10])

G, = iT'At,D, 9)
wherel is a dimensionless parameter. The peak slip acceleratjgnis expressed as (Ida,
1973[5]; Ohnaka and Yamashita, 1989[10])

2. 2

5max=r ¢4max( Y% Arbj 1 (10)

nt \C(V) pn ) D,
where ¢/, IS the dimensionless peak acceleration, @) is a function of the rupture velocity
V. We thus find that the scale dependence of scale-dependent physical quantities is commonly
ascribed to the scale-dependence of the scale-dependent constitutive pddam@teralso find

from equation (3) that the scale-dependencB ddcales with the characteristic lengthrepre-
senting geometric irregularity of the rupturing surfaces.

Characteristic length scales representing geometric irregularity of the
fault surfaces

The above discussion indicates that geometric irregularity of the rupturing surfaces plays a fun-
damental role in scaling scale-dependent physical quantities inherent in the shear rupture. The
reason for this may be understood from the following consideration. Real rupture surfaces of
heterogeneous materials cannot be plane, but they exhibit geometric irregularity. During the
shear rupture, slip displacement proceeds on the rupturing surfaces in the breakdown zone behind
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the propagating front of the rupture, and hence the rupturing surfaces are in mutual contact and
are interacting during the breakdown process. This indicates that the shear rupture process is
severely affected by geometric irregularity of the rupturing surfaces, and that the critical slip dis-
placemenD, required for the cohesive zone behind the propagating rupture front to break down
is greatly influenced by the geometric irregularity. Sibgds one of the constitutive law pa-
rameters, the effect of the geometric irregularity needs to be incorporated in the constitutive law.

If the geometric property of the rupture surfaces is quantified properly in terms of a simple pa-
rameter, the effect of the geometric irregularity can easily be incorporated into the law. Irregular
rupture surfaces of heterogeneous materials in general exhibit self-similarity; however, the self-
similarity cannot be at all scales. The slipping process during the breakdown is the process that
smoothes away geometric irregularity of the rupturing surfaces, and hence the self-similarity is
necessarily at finite scales over limited bandwidths. This means that there is at least one charac-
teristic length scale representing geometric irregularity of the rupture surfaces. The characteris-
tic lengthA is defined as the critical wavelength beyond which geometric irregularity of the rup-
ture surfaces no longer exhibits the self-similarity. More generally, when a rupture surface has
band-limited self-similarity (or fractal nature), a different fractal dimension can be calculated for
each band, and a characteristic lerigtltan be defined as the corner wavelength that separates
the neighboring two bands with different fractal dimensions. Note that the characteristic length
defined as such represents a predominant wavelength component of geometric irregularity of the
rupture surface.

Geometric irregularity of the rupture surface may thus in general be quantified and character-
ized in terms of the two parameters: the fractal dimension of each band, and the characteristic
length defined as the corner wavelength that separates the neighboring two bands. Of these two
parameters, it has been found that it is the characteristic lepgtat plays a critical role in
scaling the scale-dependent constitutive paranizt€see equation (3)). This leads to the im-
portant conclusion that the characteristic length departed from the self-similarity plays a key role
in scaling scale-dependent physical quantities inherent in the shear rupture.

Characteristic length scales inferred for earthquakes

The above conclusion that the characteristic length plays a key role in scaling scale-dependent
physical quantities inherent in the rupture, poses a question about how large the characteristic
lengths for earthquakes are. Natural faults contain a wide range of characteristic length scales de-
parted from the self-similarity. For instance, the self-similarity of natural faults is limited by the
depth of seismogenic layer and fault segment size (e.g., Aki, 1992[2], 1996][3]; Knopoff, 1996][6]).
The earthquake generation process and its eventual size are necessarily prescribed and character-
ized by these macroscopic length scales (Shimazaki, 1986[17]; Scholz, 1982[15], 1994[16]; Ro-
manowicz, 1992[14]; Matsu’ura and Sato, 1997[7]). However, scale-dependent physical quanti-
ties such a¥,, L., G, and D, are controlled by a smaller scale of the characteristic lengths on

the fault. High resistance to rupture growth will be attained at portions of fault bend or stepover,
at interlocking asperities on the fault surfaces with topographic irregularity, and/or at portions of
adhesion (or cohesion) healed between the mating fault surfaces during the inter-seismic period.
A patch of such high resistance to rupture growth on a fault may act as a barrier against earth-
guake rupture. If such a patch is tough enough to sustain an adequate amount of the elastic strain
energy stored in the surrounding medium, and if it is broken down as a consequence of tectonic
loading, it will act as a source of energy supply for the spontaneous rupture. The size of such a
patch, which is small compared with the depth of seismogenic layer and fault segment size, is al-
so a candidate for the characteristic length scale departed from the self-similarity. The scale de-

pendence of physical quantities suchXasL,, G, and D, depends on how large the size of



such a strong patch that is broken down on the fault is. For ins@Gnisewritten in terms of,

as follows
1 M+l
™M M
G =L 2" A% T e (11)
2\ B Ty
or equivalently
M +1
IB(D
G =—|—= A 12
c 2 (kc] Tp c ( )

That these relations are justified has been confirmed by laboratory data on both frictional slip
failure and shear fracture of intact rock. It has also been checked that they are applicable to earth-
gquake data.

The characteristic length, can be inferred for earthquakes under the assumption that relations
(3) and (4) can be extrapolated to the earthquake rupture. We have from (dnteit /D) =
1.5 whenAty/t, = 1 (complete stress drop)miF 10 whemAt,/t, = 0.1, 1 = 70 whenAt,/t, =
0.01, and Ih = 454 whemr,/t, = 0.001. It will be unrealistic to assume that: 1000 MPa at
depths in the brittle seismogenic layer, becatsfer intact granite tested at simulated crustal
conditions in the laboratory does not exceed 1000 MPa. More specifically= il00 MPa is
assumed under the constraint thaf < 1, At,/t, takes a value ranging from 1 to 0.004 for Cali-
fornian earthquakes analyzed by Papageorgiou and Aki (1983[13]), and Ellsworth and Beroza
(1995[4]). In this case&\/D, has a value ranging from 1.5 to 144.k ¥ 3,1 = 30000 MPa, and
At, = 10 MPa are further assumed, we have from (7)Xhat 10°D,, and from (3) and (4) that,
= 10D.. Hence, we have Xe 10°A.. The relationX, = 10°D, means that for the cohesive zone
size of, for instance, 1 km to break down, the critical amount of slip of 1 m is required. The rela-
tion X, = 10fA, indicates that the predominant wavelength component of 10 m is contained in
geometric irregularity of the rupture surfaces for the cohesive zone size of 1 km. This may be
paraphrased as follows. On a fault having the characteristic length (predominant wavelength) of
10 m, the amount dd, becomes 1 m under the stress conditionAhgt, = 0.1.
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